

Safety of probiotics

Sampo Lahtinen & Arthur Ouwehand

Danisco A/S Health & Nutrition Kantvik, Finland

Lactic acid bacteria – History of safety

 Foods fermented with LAB have been consumed safely for thousands of years
 Including spontaneous fermentation

LAB and *Bifidobacterium* are natural inhabitants of intestinal tract, oral cavity and urogenital tract

LAB are extremely rarely associated with disease or infections, bifidobacteria even more rarely

How to assess safety?

Assessing probiotic safety - In vitro

For review, see: Vankerckhoven et al (2008) Trends Food Sci Technol 19:102-114

Taxonomy

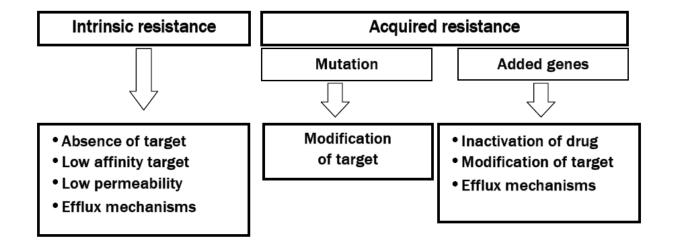
- You can evaluate safety only if you know which strain you are evaluating!
- Intentional misleading: Bacillus coagulans vs. "Lactobacillus sporogenes"
- Molecular methods as basis for identification
- Adhesion to human tissues
 - Adhesion to mucus / epithelial cells a beneficial feature Selection criterion
 - Can adhesion be harmful? Not a good safety criterion
- Haemolysis, platelet aggregation relevant or not?
- Resistance to inactivation by immune system
 - Serum-mediated killing
 - Phagocytosis
- Virulence genes and toxic metabolites
 - Enterococcus faecium vs Enterococcus faecalis → latter contains virulence genes
 - Enterotoxin production by Bacillus cereus, some Bacillus subtilis

Taxonomy: Qualified presumption of safety

The EFSA Journal (2007) 587, 1-16

Introduction of a Qualified Presumption of Safety (QPS) approach for assessment of selected microorganisms referred to EFSA¹

Opinion of the Scientific Committee


(Question No EFSA-Q-2005-293)

Adopted on 19 November 2007

- Includes a list of microorganisms regarded as safe for consumption
- In the USA: "Generally regarded as safe" (GRAS)
- Major importance: reliable identification and deposition in culture collection

In vitro safety assessments: Antibiotic resistance

- Antibiotic resistance per se not a problem, if it's intrinsic
- Key issue: are there mobilized/transfered resistance elements?
 - Resistance genes within plasmids or transposons; horizontal gene transfer
- Enterococcus sp. → many reports of horizintal transfer of resistance (no QPS)
- Removal of antibiotic resistance genes?
 - GMO probiotics, regulatory issues

Production of D-lactic acid

Some LAB strains produce only L-lactic acid, but many produce both Dand L-lactic acids

- Metabolism of D-lactic acid by humans is lower than L-lactic acid (different mechanism) → risk of acidosis?
- Probiotics produce only small amounts of D-lactic acid; <u>much less than</u> <u>the normal microbiota of the humans</u> (including infants)
- Normally, lactic acid produced is consumed by other gut microbes
- Numerous studies of D/L-lactic acid producing LAB in humans, adults and infants → no adverse effects
- D-lactic acidosis is rare condition in infants with short bowel syndrome
 No association with probiotics
- D-lactic acid producing probiotics are safe for adults and infants
 - In the special group of SBS patients, caution is required

For review, see: Connolly&Lönnerdal (2004) NUTRAfoods 3(3): 37-49

In vivo safety assessment: Animal models

Acute toxicity and tolerance of high doses

e.g. Zhou (2000) Food Chem Toxicol 38:153-161

Bacterial translocation (from gut to host tissues):

e.g. Daniel (2006) Appl Environ Microbiol 72: 5799-5805

- Healthy animals (adults, neonates)
- Colitis models
- Immunocompromized animals
- Endocarditis
 - Probiotics 100 to 10,000-fold less likely to cause infections than Staphylococci and Streptococci
 Vankerckhoven et al. (2007) J Med Microbiol 56:1017-1024

Other models:

Liver injury

Osman et al. (2005) Microb Ecol Health D 17:40-46

- Intestinal resection
 Mogilner et al. (2007) J Pediatr Surg 42:1365-1371
- Models for in vivo antibiotic resistance transfer

Mater et al. (2008) J Mol Microbiol Biotechnol 14: 123-125

Can humans eat too much?

- No observed adverse effect level 50 g/kg body weight (mouse)
- Safety margin for humans (1/100) ¹/₂ g/kg body weight
- For 70 kg person: 35 g pure probiotic bacteria
- 35 g ≈ 3500 x 10⁹ bacteria
- (100 g yogurt ≈ 10⁹)
- ≈ 350 kg yogurt

Human safety studies

Separate safety / tolerance tests often not done prior to use in foods
 QPS, GRAS status

- Examples of tolerance tests:
 B. longum 46 and B. longum 2C
 L. reuteri ATCC 55730
 Wolf et al (1995) Microb Ecol Health D 8: 41-50

 gastrointestinal function

 Streptococcus salivarius K12
 Burton et al. (2006) Appl Environ Microbiol 72: 3050-3053

 oral health

 L. acidophilus LA-CH5, B. lactis Bb-12 Saarela et al. (2007) Int J Antimicrob Agents 29:271-280

 antibiotic gene transfer
 L. rhamnosus GG
 Laitinen et al (2005) Br J Nutr 94:565-574

 effect on infant growth
- Numerous clinical trials with no adverse effects, also in infants

e.g. Dekker et al (2009) Int Dairy J 19: 149-154

Main body of evidence: wide-spread and long-term safe use

Infections by lactic acid bacteria

-					
	Disease	Organism	Identification	Outcome	Reference
	AIDS	L. casei	?	٢	Abgrall et al. 1997
	AIDS (3x)	L. rhamnosus	?	©/☺/⊗	Horwitch et al. 1995
	AIDS	L. casei	AMS-VITEK	\odot	Rogasi et al. 1998
	HIV	L. rhamnosus	?	\odot	Schlegel et al. 1998
	Leukemia	L. rhamnosus	API 50	\odot	Chomarat & Espinouse 1991
Ч	Leukemia	Lactobacillus	?	\odot	Cooper et al 1998
	Pancreatitis (2x)	L. rhamnosus	?	©/⊗	Brahimi et al. 2008
	Partial colonectomy	Pediococcus	?	\odot	Barton et al. 2001
	Colonoscopy	L. rhamnosus	API 50	\odot	Avlami et al. 2001
	Enteric fistula	L. casei	16S rDNA	\odot	Parola et al. 1998
	Urolithiasis	L. jensenii	PFGE	\odot	Chazan et al 2008
	Diabetes	<i>L. casei</i> group	API	\odot	Chanet et al. 2007
	Acupuncture	B. longum	Metabolic endproducts	\odot	Ha et al. 1999
	Healthy infant	B. breve	DNA-DNA homology	\odot	Hata et al. 1988
Y	Healthy senior	L. rhamnosus	?	$\overline{\mathbf{O}}$	Wolz&Schaefer 2008

Infections by lactic acid bacteria Identification

Disease	Organism	Identification	Outcome	Reference
AIDS	L. casei	?	\odot	Abgrall et al. 1997
AIDS (3x)	L. rhamnosus	?	©/©/8	Horwitch et al. 1995
AIDS	L. casei	AMS-VITEK	\odot	Rogasi et al. 1998
HIV	L. rhamnosus	?	\odot	Schlegel et al. 1998
Leukemia	L. rhamnosus	API 50	\odot	Chomarat & Espinouse 1991
Leukemia	Lactobacillus	?	\odot	Cooper et al 1998
Pancreatitis (2x)	L. rhamnosus	?	©/⊗	Brahimi et al. 2008
Partial colonectomy	Pediococcus	?	\odot	Barton et al. 2001
Colonoscopy	L. rhamnosus	API 50	\odot	Avlami et al. 2001
Enteric fistula	L. casei	16S rDNA	\odot	Parola et al. 1998
Urolithiasis	L. jensenii	PFGE	\odot	Chazan et al 2008
Diabetes	<i>L. casei</i> group	API	\odot	Chanet et al. 2007
Acupuncture	B. longum	Metabolic endproducts	\odot	Ha et al. 1999
Healthy infant	B. breve	DNA-DNA homology	\odot	Hata et al. 1988
Healthy senior	L. rhamnosus	?	$\overline{\mathbf{i}}$	Wolz&Schaefer 2008

Consumption of probiotics vs. *Lactobacillus* bacteremia

Salminen et al (2002) found no increase in Lactobacillus bacteremia in Finland between 1995-2000 despite strong increase in Lactobacillus rhamnosus GG consumption during the same time period

Salminen et al (2002) Clin Infect Dis 35:1155-1160

Sullivan & Nord (2006) found no increase in Lactobacillus bacteremia in Stockholm, Sweden, between 1998 and 2004

Sullivan & Nord (2006) Scand J Infect Dis 38:327-331

Salminen et al (2006): Identification of 85 blood isolates of LAB:

L. rhamnosus (n=46), L. casei (n=12), L. fermentum (n=12), L. jensenii (n=3), L. gasseri (n=3), L. salivarius (n=3)

Salminen et al (2006) Clin Infect Dis 42: e35-344

But, rare cases of bacteremia or fungemia associated with probiotic intake have been reported in (severely) ill patients

For review, see: Boyle et al (2006) Am J Clin Nutr 83: 1256-1264

Do strain differences exist?

Clear differences in the number of isolates:

- Certain L. rhamnosus, B. subtilis and S. boulardii most frequently reported Boyle et al (2006) Am J Clin Nutr 83: 1256-1264
- Also some *L. casei*, *L. fermentum*
- Salminen et al (2006) Clin Infect Dis 42: e35-344
- Apparent lack of *L. acidophilus*, *Bifidobacterium*, others
- Differences in the detection methods?
- Thorough screening only in some regions \rightarrow regional bias?
- Differences in the clinical situations in which probiotics are used?
 → biased towards strains used frequently with certain diseases?
- · Lack of virulence factors, "mechanisms of adverse effects"
- In total, adverse events very rare

Adverse events: The Dutch acute pancreatitis study

◆ Clinical study assessing efficacy of a probiotic mixture ("Ecologic 641") in the treatment of acute pancreatitis → patients in critical condition

Besselink et al (2008) Lancet 371 (9613): 651-659

- Higher mortality in probiotic group (n=24/153) compared to placebo group (n=9/145)
 - Overal mortality 11% (normally between 10-30%)
 - Higher bowel ischemia in probiotic group (9 vs 0 cases)
 - No difference in infections between the groups
- Probiotic treatment associated with higher mortality- What was the cause?
- However, organ failure rate significantly higher in probiotics group (n=20) than in the placebo group (n=7) <u>before</u> the treatment!
 - Organ failure correlates also with bowel ischemia (haemodynamic disturbance)
 Reid et al (2008) Lancet 372 (9633): 112-113
- It is currenlty unclear what caused the observed effects

✤ In vitro safety assessments: Taxonomy, antibiotic resistance

In vivo safety assessments:

- Are animal models validated?
- Human safety studies recommended especially probiotics other than Lactobacillus and Bifidobacterium, which can be considered safe
- Overall safety record of probiotics is excellent
 - Compares well with other foods, drugs etc.:
 - side-effects and adverse events of different foods
 - side-effects of medicines, environmental compounds
 - fermentation originally used to preserve food, reduce adverse effects
 - Long history of safe use for LAB: always part of human nutrition and microbiota
 - Lactobacillus and Bifidobacterium safe also for infants
 - Early colonizers of infant gut; also present in human milk; infants exposed to these microbes also during birth

- No safety concerns for healthy consumers
- In certain severe clinical conditions:
 - Consider probiotic administration carefully, depending on health status of patient

ILSI Probiotic Task Force focuses also on safety of probiotics <u>http://europe.ilsi.org/activities/taskforces/diet/probiotics.htm</u>

